The only drawback is that LK-99 is polycristalline… Levitating trains and computers, electronics, are a stretch as long as the material is not monocristalline.
no i know many of the applications, its huge if true! i understand that, but almost everything like this comes with trade-offs, and i was wondering if there are any here that would make it non-viable for some/all applications
The claimed saturation current is very low. If this is inherent and not just a first-try thing it will be less-good than permanent magnets for doing many magnetic-field things and less-good than Aluminum for some current-carrying things.
It’s a perovskite, in semiconductor applications these have stability and durability problems.
It might also be a scam. This would make it useless.
Power cables are currently (heh) designed to operate below 90degC, because after this you get thermal runaway and the conductor melts. That’s already within the operating range of this.
from what i read, it doesn’t seem like you’re able to push much current through it, which makes power cables an unlikely application in its current (heh) form
Insane capacity batteries
Lossless power transmission via wires
Better magnetically levitating trains
Much more power efficient computers, electronics
The list is huge
The only drawback is that LK-99 is polycristalline… Levitating trains and computers, electronics, are a stretch as long as the material is not monocristalline.
It is huge nethertheless.
ELI5?
ELI5 :
Think of the material as a powder. You can compress the powder and make current flows though it. It’s good for wiring, etc.
But to have an application in electronics, it would have to be like a metal, which it can’t be since it’s a powder
Metals are usually polycrystalline. Not sure what you’re trying to say.
no i know many of the applications, its huge if true! i understand that, but almost everything like this comes with trade-offs, and i was wondering if there are any here that would make it non-viable for some/all applications
The claimed saturation current is very low. If this is inherent and not just a first-try thing it will be less-good than permanent magnets for doing many magnetic-field things and less-good than Aluminum for some current-carrying things.
It’s a perovskite, in semiconductor applications these have stability and durability problems.
It might also be a scam. This would make it useless.
Power cables are currently (heh) designed to operate below 90degC, because after this you get thermal runaway and the conductor melts. That’s already within the operating range of this.
from what i read, it doesn’t seem like you’re able to push much current through it, which makes power cables an unlikely application in its current (heh) form