• yesman@lemmy.world
    link
    fedilink
    arrow-up
    7
    ·
    3 days ago

    You can use physical objects like dice or lava lamps that will naturally form random distribution when we check. But Newton and others would argue that even this was a determinant problem and if you had perfect knowledge of the dice and a good physics theory, you could predict the outcome.

    We can only recognize randomness by the patterns it leaves behind.

    The philosophical truth is that we don’t know if “randomness” is an actual phenomena or just a bucket where we put outcomes we haven’t learned to predict yet. A sort of randomness of the gap. Some have suggested that as a pattern-recognizing machine, the human mind simply can’t conceive randomness. Even the way “randomness” is verified is by looking at the distribution in the outcome and see if it matches the pattern we expect.

    • model_tar_gz@lemmy.world
      link
      fedilink
      arrow-up
      2
      ·
      edit-2
      3 days ago

      The notion that our universe is perfectly causal to the point that you can predict exactly when and where that specific atom will decay is pretty much bunked at this point. Not that living in a probabilistic, quantum physics universe is any fucking easier to comprehend but them’s be the cards we were dealt.

        • thebestaquaman@lemmy.world
          link
          fedilink
          arrow-up
          1
          ·
          6 hours ago

          I would say “debunked” in the sense that quantum mechanics correctly predicts phenomena that don’t exist in classical physics, and relies on the idea that quantum particles obey a probability distribution, rather than deterministic mechanics.

          Quantum mechanics appears to work so well for these phenomena compared to deterministic mechanics that it’s tempting to say that the actual universe is in fact governed by probabilities rather than determinism.

          I would argue that all physical models of the universe are just that: Models. We can get asymptotically closer to a perfect description of the universe, but no model can ever tell us the true nature of the underlying system it is describing, just be an arbitrarily good description of it.