There is a bunch of hydro along the Waikato. Lakes are huge.
Current most efficient panels are 750W giving an power density of ~350W/m2. With all of the gaps and extras you can probably get a system density of around 250W/m2.
Using this assumption, we are looking at 1MW/acre.
Floating 10 acres of panels (or using the nearby river bank) would supplement 10MW of generation during the day, reducing the draw down on the lake level. Do this at the 9 dams along the Waikato that is another easy 90MW without major infrastructure costs.
The capital outlay is also very small, compared to trying to get another 90MW plant built and commissioned somewhere.
The capital outlay may be small, but the ongoing maintenance on a floating structure like that would be quite high, certainly compared to a fixed installation.
There is a bunch of hydro along the Waikato. Lakes are huge.
Current most efficient panels are 750W giving an power density of ~350W/m2. With all of the gaps and extras you can probably get a system density of around 250W/m2.
Using this assumption, we are looking at 1MW/acre.
Floating 10 acres of panels (or using the nearby river bank) would supplement 10MW of generation during the day, reducing the draw down on the lake level. Do this at the 9 dams along the Waikato that is another easy 90MW without major infrastructure costs.
The capital outlay is also very small, compared to trying to get another 90MW plant built and commissioned somewhere.
The capital outlay may be small, but the ongoing maintenance on a floating structure like that would be quite high, certainly compared to a fixed installation.
Maybe, it is not like the ocean. The lakes don’t have big waves to deal with etc…
The benefit is that there are not any trees and plant growing above where you want your panels.